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Abstract We present the LOTOS-07 code for performing local earthquake tomo-
graphic inversion, which is freely available (see the Data and Resources section for the
Web site). The initial data for the code are the arrival times from local seismicity and
coordinates of the stations. It does not require any information about the sources. The
calculations start from absolute location of sources and estimates of an optimal 1D-
velocity model. Then the sources are relocated simultaneously with the 3D-velocity
distribution during iterative coupled tomographic inversions. The code allows results
to be compared based on node or cell parameterizations. The synthetic dataset used for
testing the code is based on source–receiver configurations from a real experiment in
Costa Rica. The travel times for this dataset are computed by 3D tracing through a
rather complicated synthetic model and are perturbed with realistic noise. We also
present a series of synthetic datasets with unknown sources and velocity models
(see the Data and Resources section for the Web site) that can be used as blind bench-
marks for testing different tomographic algorithms. We encourage other users of to-
mography algorithms to join the program on creating benchmarks that can be used to
check existing codes.

Introduction

Seismic tomography is an effective tool for investigating
the deep Earth interior. The results provided by tomographic
inversions reveal the mechanisms that control tectonic pro-
cesses in the Earth. Studies exist at many different scales,
from global to local. One of the most complicated tomo-
graphic schemes is based on using the arrival times of P
and S seismic waves from local earthquakes with unknown
parameters (local earthquake tomography [LET]). In this
case, the problem is reduced to a coupled inversion for ve-
locity distributions and source parameters. LET is often per-
formed in high-contrast areas (e.g., subduction zones and
volcanic areas) and requires performing iterative nonlinear
approaches in which ray paths are traced in updated 3D-
velocity models.

During the past few decades, several algorithms for LET
schemes have been created by various research groups. One
of the most popular LET algorithms is the SIMULPS code
and its derivatives, a powerful and simple practical realiza-
tion tool for iterative tomographic inversion. This code is
freely available and is used by many authors routinely. This
code was created in the 1980s and 1990s (Thurber, 1983;
Eberhart-Phillips, 1986, Thurber, 1993; Thurber et al., 1995)
and is now being actively developed and updated by different
authors. Dozens of tomographic studies in different regions
are based on this algorithm (e.g., Hauksson and Haase, 1997;
Eberhart-Phillips and Michael, 1998; Graeber and Asch,

1999; Haslinger et al., 1999; Reyners et al., 1999; Dorbath
and Masson, 2000; Hauksson, 2000; Husen et al., 2000; Paul
et al., 2001; Eberhart-Phillips and Bannister, 2002; Husen
et al., 2002; Chiarabba and Amato, 2003; Husen et al.,
2003; Husen and Smith, 2004; Daly et al. 2008). Another
algorithm for LET was developed by Benz et al. (1996) and
Hole et al. (2000), which has been used in other studies (e.g.,
Ramachandran et al., 2005; Yang and Shen, 2005). An algo-
rithm created by Roecker and coauthors should be also men-
tioned here (Roecker et al., 1993; Masturyono et al., 2001;
Roecker et al., 2004). Another important contribution to
tomographic tools was made by Zhao et al. (1992, 1995).
Among other codes, which seem to us very promising, we
can single out the works by Nakajima et al. (2001) and
Wagner et al. (2005), in which a 3D starting model based
on a priori information is used. Unfortunately, in this over-
view, we cannot mention all other researchers who contrib-
uted to creating different tomographic algorithms according
to the LET scheme. However, we find this variety of codes
that allows verification of the results produced by different
algorithms very positive.

In this situation, with dozens of tomographic models
using different codes appearing every year, the most impor-
tant and difficult task in tomographic inversion is now not
showing the results, but providing convincing arguments that
these results are related to structure in the real Earth. The
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authors often present the results of synthetic modeling based
on datasets they created themselves. Sometimes the descrip-
tions of the tests are very short, and a reader cannot follow
the details of the forward and inverse modeling in such inner
tests. Therefore, one must trust that the authors performed the
tests correctly. However, when the synthetic model is known,
there is strong temptation to tune the inversion parameters to
achieve the best fit of the results with the model. It is obvious
that in a case of real data, this is not a possibility. The most
unbiased way to check the algorithm is to perform the inver-
sion using a synthetic dataset created by another person using
another algorithm. Ideally, the testing should be performed
blindly without any knowledge about the model and source
locations. Such a strategy would reveal all the problems of
the inversion algorithm and show whether it can be used to
obtain reliable results based on real data. In this study, we
initiate a program for creating benchmarks for testing LET
algorithms. We hope that other researchers will join this pro-
gram and will create a series of blind tests to be used for
testing our algorithms.

Here we present the most recent version of the
LOTOS-07 algorithm. In this article we focus on technical
details of the new features of the algorithm and present its
working ability using a synthetic test. We believe that using
synthetic modeling is more appropriate for presenting the al-
gorithm than considering real data results. In this case we
forget about the sources and the model and perform the in-
version in absolutely the same way as we would for real data.
Finally, we can compare our results with the true model and
make a conclusion about the working ability of the algo-
rithm, which is not possible for real data.

This article has two main purposes. First, it presents the
algorithm LOTOS-07, which can be freely downloaded from
our Web site (see the Data and Resources section). This al-
gorithm is simple in practical use and can be easily applied
by any person to any datasets according to the LET scheme.
Our second purpose is to attract the attention of all tomog-
raphy users to the problems of synthetic testing and to pro-
pose a universal benchmark consisting of a series of blind
synthetic tests. We believe that testing existing algorithms
with these benchmarks will increase the confidence in tomo-
graphic results.

Description of the LOTOS-07 Algorithm

General Remarks

We designed a tomographic algorithm, LOTOS-07
(local tomography software) for simultaneous inversion of
P- and S-velocity structures and source coordinates. The
LOTOS-07 algorithm can be directly applied to very differ-
ent datasets. It has a wide range of possibilities for perform-
ing different tests and is easy to operate. Previous versions of
the code have already been used to investigate the deep struc-
ture beneath the Central Andes (Koulakov et al., 2006), Cen-
tral Java (Koulakov et al., 2007; Wagner et al., 2007), Costa

Rica (Dinc et al., 2008), Toba (I. Koulakov, T. Yudistira,
et al., unpublished manuscript, 2008), the Anatolian fault re-
gion, Nankai (Japan), Vranchea, and other areas. Since then,
the code has been significantly updated. The general struc-
ture of the LOTOS-07 code is presented in Figure 1. The
most important improvement of the code is the inclusion
of a block for 1D-velocity optimization, presented in the Al-
gorithm for 1D-Velocity Optimization section. The main

Figure 1. General structure of the LOTOS-07 algorithm. White
boxes represent program steps; gray boxes contain the main data
used in processing.
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steps of the algorithm for 3D-velocity inversion are described
in the Bending Algorithm for Ray Tracing in a 3D-Velocity
Model section.

In this article, the code is demonstrated using a synthetic
dataset. This allows us to quantitatively evaluate the accuracy
of source locations and the correctness of the synthetic model
reconstruction. The dataset corresponds to a real observation
system that was used to compute the 3D-velocity structure of
P and S velocities beneath Costa Rica (Dinc et al., 2008). In
total, we used information from more than 1000 events and
more than 30,000 P and S picks. The synthetic model is de-
scribed in detail in the Synthetic Modeling section. After
computing the synthetic travel times, all information about
sources and velocity models was forgotten, and we found
ourselves in the same situation as for real data. This dataset
is one of the benchmark blind tests we created and is freely
available (see the Data and Resources section for Web site
information). This dataset will be described in detail in
the Bench Mark for Testing the Tomographic Algorithms
section. The LOTOS-07 code is available online, so anyone
can repeat the same calculations and obtain the same images
as those presented in this article.

The input dataset for LOTOS-07 includes two files.

1. A file with station geographic coordinates, including
longitude, latitude, and elevation of stations.

2. A file with arrival times and initial locations of sources (if
available). In the presented dataset, as for real data, coor-
dinates and origin times of sources are not given. There-
fore, instead of the source coordinates, an arbitrary point
(the center of the study area) is given. The uncertainty of
the origin times is modeled by adding a random bias to all
travel times for each source.

In addition, a preliminary guess for a starting 1D model
and a set of free parameters (for location, parameterization,
inversion, visualization, etc.) should be defined by the user.

In the LOTOS-07 code we do not require that sources be
located inside the network of stations (having an azimuthal
gap <180°), as is the case in many tomographic studies. We
suppose that this requirement does not reflect the real impor-
tance of an event for tomographic inversion. For example,
according to this criterion, a shallow event located close
to stations, but outside the network would be rejected, while
another event at a 600 km depth with an epicenter projection
coinciding with the network area would be used. It is obvious
that the contribution of the first event for investigating seis-
mic structure would be much more important. In LOTOS-07
we set the requirements less strictly. For example, an event is
rejected if the lateral distance to the nearest station is more
than some predefined distance (e.g., 200 km).

Algorithm for 1D-Velocity Optimization

We present an algorithm to evaluate 1D-velocity models
that can be used as a starting model for 3D-tomographic in-
version. As is stated in our previous studies (e.g., Koulakov

et al., 2007), the problem of absolute-velocity determination
based on data from natural sources with unknown parame-
ters is very unstable. This instability is mostly due to a trade-
off between velocity distribution, origin time, and depth of
sources. At the same time, incorrect information about the
starting absolute-velocity distribution can cause some bias
in the final results. To explore the effects of a starting model
on the final results of the tomographic inversion and to re-
duce these effects, we have developed an algorithm to eval-
uate 1D-velocity models.

Similar steps have been performed in many other works.
One of the most popular algorithms for 1D-velocity evalu-
ation is the VELEST code (Kissling et al., 1994), which
has been used in dozens of studies. This code computes a
1D model that is used for a 3D-tomographic inversion. Cal-
culations are performed based on a trial and error method and
consist in locating sources in many different 1D models.

Our version of the algorithm is based on the iterative
repetition of the following steps:

0. Data selection for an optimization. From the entire data
catalog, we select events that should be distributed as uni-
formly with depth as possible. To do this, we select for
each depth interval the events with the maximum number
of recorded phases. The total number of events in each
depth interval should be less than a predefined value
(e.g., four events).

1. Calculation of a travel time table in a current 1D model. In
the first iteration, the model is defined manually with the
use of possible a priori information. The travel times be-
tween sources at different depths to the receivers at dif-
ferent epicentral distances are computed in a 1D model
using analytical formulas (Nolet, 1981). The algorithm
allows the incidence angles of the rays to be defined in
order to achieve similar distances between rays at the
surface.

2. Source location in the 1D model. The travel times of the
rays are computed using tabulated values obtained in step
1. The travel times are then corrected for elevations of
stations. The source location is based on calculating a
goal function (GF) that reflects the probability of a source
location in a current point. The form of the GF is defined
in Koulakov and Sobolev (2006). Searching for the GF
extreme is performed using a grid search method. We
start from a coarse grid and finish our search in a fine
grid. This step is performed relatively quickly as it uses
the tabulated values of the reference travel times.

3. Calculation of the first derivative matrix along the rays
computed in the previous iteration. Each element of
the matrix Aij is equal to the time deviation along the
jth ray caused by a unit-velocity variation at the ith depth
level. The depth levels are defined uniformly, and the ve-
locity between the levels is approximated as linear.

4. Matrix inversion is performed simultaneously for the P
and S data using the matrix computed in step 3. In addi-
tion to the velocity parameters, the matrix contains the
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elements to correct the source parameters (dx, dy, dz, and
dt). The data vector contains the residuals computed after
the source location (step 2). Regularization is performed
by adding a special smoothing block. Each line of this
block contains two equal nonzero elements with opposite
signs that correspond to neighboring depth levels. The
data vector in this block is zero. Increasing the weight
of this block smooths the solution. If there is a priori in-
formation about the existence of interfaces (e.g., Moho),
it can be included in the inversion. In this case, the link
between the pair of nodes just above and below the inter-
face would be skipped.

Optimum values for free parameters (smoothing coeffi-
cients and weights for the source parameters) are evaluated
on the basis of synthetic modeling. The inversion of this
sparse matrix is performed using the least-squares QR
(LSQR) method (Paige and Saunders, 1982; van der Sluis
and van der Vorst, 1987). A sum of the obtained velocity
variations and the current reference model is used as a refer-
ence model for the next iteration, which contains steps 1–4.
The total number of iterations is also determined according to
the results of synthetic modeling.

Results of the 1D-model optimization are shown in Fig-
ure 2. The true-velocity model (dashed curve) is the same in
both cases. Here we use two different starting models (black
lines) to investigate the stability of the optimization. In model
1 (upper panel), we use a simple starting-velocity model
without a low-velocity layer above 7 km depth. For the depth
interval of 10–40 km, the fit of the optimized model (gray
curve) with the true one seems to be satisfactory. For the
shallower and deeper parts, the optimization for P velocity
has a rather large misfit. For the second model (lower panel),
we included the low-velocity layer in the shallowest part of
the starting model, which improved the general fit of the
model. At the same time, the inversion produced an artifact
at a depth of ∼10 km, which causes a low-velocity zone be-
tween 10 and 20 km. This could significantly change the ray
paths and resulting patterns. However, as will be shown later,
we did not see a significant difference between the resulting
anomalies at 15 km deep in cases of inversion based on these
two 1D models.

These results confirm our statement in our previous
works (e.g., Koulakov et al., 2007) that in the case of the
LET scheme, reconstructing relative anomalies is much more
stable than reconstructing absolute velocities.

Bending Algorithm for Raytracing
in a 3D-Velocity Model

One of the key features of the LOTOS-07 code is a
raytracing algorithm based on the Fermat principle of travel-
time minimization. A similar approach is used in other algo-
rithms (e.g., Um and Thurber, 1987) and is called bending
tracing. We present our own modification of the bending al-
gorithm. An important feature of this algorithm is that it can
use any parameterization of the velocity distribution. It is

only necessary to define uniquely one positive-velocity value
at any point of the study area. It can be done, for example,
with nodes, cells, polygons, or analytical laws. The current
version of LOTOS-07 includes various options for velocity
definition. However, if necessary, any other parameterization
can be easily included.

A basic principle of our bending algorithm is shown
in Figure 3. In the presented example, we use a model with
exaggerated-velocity contrasts. In the vertical direction, the
velocity varies from 2.5 to 9 km=sec. The checkerboard
anomalies have amplitudes of �30%. It is obvious that in
this model, the ray path has a fairly complicated shape de-
termined by the velocity distribution.

Searching a path with minimum travel time is performed
in several steps. The starting ray path is a straight line. In the
first step (Fig. 3a), the ends of the rays are fixed (points 1 and
2), and point A in the center of the ray is used for bending.
Deformation of the ray path is performed perpendicular to
the ray path in two directions: in and across the plane of

Figure 2. Results of 1D-model optimization. The cases of two
different starting models are presented. The dashed curve is the true-
velocity distribution in the synthetic model. The black curve repre-
sents the starting model. The gray curve is the resulting velocity
distribution.
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the ray. The values of shift of the new path with respect to the
previous path depend linearly on the distance from A to the
ends of the segment, as shown in Figure 3. In the second step
(Fig. 3b), three points are fixed (points 1, 2, and 3), and de-
formation of the ray path is performed in two segments (at
points A and B). In a third step (Fig. 3c), four points are
fixed and three segments are deformed. In the panel labelled
Step 8 (Fig. 3d), the results of bending are shown for eight
segments. The ray constructed in this way tends to travel
through high-velocity anomalies and avoids low-velocity

patterns. It should be noted that although a 2D model is
shown in Figure 3, the algorithm is designed for the 3D case.

Iterative Tomographic Inversion

The starting 1D-velocity model and initial locations of
sources are obtained in the step of 1D-model optimization
(see the General Remarks section). The sources are then re-
located using a code based on 3D raytracing (bending). As
for 1D modification, the location algorithm is based on find-

Figure 3. Grounds of the bending algorithm. Ray construction is demonstrated for a model with exaggerated-velocity contrasts. 1D ve-
locity varies from 2500 to 9000 m=sec at 2000 m depth. Hatched light gray patterns represent negative anomalies of �30%; dark gray
patterns are positive anomalies of �30%. Details of the bending algorithm are given in the text.
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ing an extreme of a GF. The description of the GF is the same
as in the 1D case. However, the grid search method, which is
very efficient for 1D models, seems to be too time consuming
when 3D raytracing is applied. We therefore use a gradient
method (Koulakov et al., 2006) to locate sources in 3D mod-
els, which is not as robust as the grid search method but is
much faster.

To parameterize the velocity perturbations, two alter-
native options are used in the LOTOS-07 code. The first
method is parameterization with nodes that are installed in
the study volume using the algorithm described in Koulakov
et al. (2006). The nodes are based on vertical lines distributed
regularly in map view (e.g., with steps of 5 × 5 km). In each
vertical line, the nodes are installed according to the ray dis-
tribution. In the absence of rays, no nodes are installed. The
spacing between the nodes is chosen to be smaller in areas of
higher ray density. However, to avoid excessive concentra-
tion of nodes, a minimum spacing is defined (e.g., 5 km).
Between the nodes, the velocity distribution is approximated
linearly. Examples of node distributions in the depth interval
of 10–20 km for the P model are shown in the upper panels
of Figure 4.

In addition, the LOTOS-07 algorithm allows for the use
of another method of parameterization with rectangular cells.
The cells are constructed in Cartesian coordinates by subdi-
viding the study volume into parallelepipeds of variable size
according to the ray density. The size of the cells is larger if
the ray density is lower. Practical realization of grid construc-
tion is based on iterative subdivision of parallelepipeds in
two equal parts across the x, y, and z directions, one after
another. The procedure starts from the entire study volume
and ends when the size of the cells becomes smaller than a
predefined value. In each iteration, the subdivision of cells
into two parts is performed only if the sum of the length
of the rays inside a current block is larger than a predefined
value. The value of the retrieved-velocity anomaly in each
block is presumed to be constant. A similar approach has
been used in some regional (e.g., van der Hilst and Engdahl,
1991) and global (e.g., Bijwaard et al., 1998) studies.

In order to reduce the effect of node/cell distributions
on the results, we perform the inversion using several grids
with different basic orientations (e.g., 0°, 22°, 45°, and 67°).
Examples of two different grids for node and cell param-
eterizations with the basic orientations of 0° and 45° are
demonstrated in Figure 4 (left- and right-hand columns, re-
spectively). After computing the results for grids with differ-
ent orientations, they are stacked into one summary model,
reducing any artifacts related to grid orientation.

It is important to note that the total number of nodes/
cells can be larger than the ray number. This does not cause
any obstacles for performing the inversion, because in our
case, the unknown parameters associated with the parame-
terization nodes/cells are not independent but are linked
through a smoothing block that will be described later for
the step of inversion. If the parameterization spacing is sig-
nificantly smaller than the sizes of the expected anomalies,

the results of the inversion are almost independent of the dis-
tribution of nodes/cells. In this sense, our parameterization
can be considered quasi continuous. The construction of
the parameterization grids is performed only in the first itera-
tion. In the next iterations, the algorithm uses the same node/
cell configurations.

The first derivative matrix is calculated using the ray
paths computed after the source locations in the 3D model.
Each element of the matrix, Aij � ∂ti=∂vj, is equal to the
time deviation along the ith ray due to a unit-velocity per-
turbation in the jth node/block.

Inversion of the entire sparse A matrix is performed
using an iterative LSQR algorithm (Paige and Saunders,
1982; van der Sluis and van der Vorst, 1987). In addition
to P- and S-velocity parameters, the matrix contains the ele-
ments responsible for the source (dx, dy, dz, and dt), and
station corrections. The amplitude and smoothness of the so-
lution is controlled by two additional blocks. The first block
is a diagonal matrix with only one element in each line and
zero in the data vector. Increasing the weight of this block
reduces the amplitude of the derived P- or S-velocity anoma-
lies. The second block controls the smoothing of the solu-
tion. Each line of this block contains two equal nonzero
elements of opposite sign that correspond to all combinations
of neighboring node/cells in the parameterization grid. The
data vector in this block is also zero. Increasing the weight of
this block reduces the difference between solutions in neigh-
boring nodes, resulting in smoothing of the computed-
velocity fields.

The steps of grid construction, matrix calculation, and
inversion are performed for several grids with different basic
orientations. The resulting velocity anomalies derived for all
grids are combined and computed in a regular grid. This
model is added to the absolute-velocity distributions used
in a previous iteration. New iterations repeat the steps of
source location, matrix calculation, and inversion.

One of the most delicate problems in tomographic inver-
sion is correctly defining the free parameters for inversion
(smoothing and amplitude coefficients, weights for source
and station corrections, number of iterations, etc.). In many
tomographic studies (e.g., Eberhart-Phillips, 1986; Graeber
and Asch, 1999; Paul et al., 2001; Husen et al., 2003; Wag-
ner et al., 2005; Yang and Shen, 2005), in order to estimate
the optimal regularization level, the authors investigate the
relationships between the amplitudes of the solution, root
mean square (rms) of residuals, and regularization coeffi-
cients (so-called trade-off curves [TOCs]). Visually analyzing
the TOCs, they declare that the best solution corresponds to
the corner point of the L-shaped curve. However, this ap-
proach seems not always adequate. First, in many cases,
the visual analysis of TOCs does not uniquely reveal the point
of maximal curvature. Second, in most of studies the damp-
ing parameter is evaluated based on a TOC computed in the
first iteration. However, it is clear that the amplitudes of the
solutions in second, fifth, and tenth iterations would be dif-
ferent. The TOCs computed in the first iteration cannot pro-
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Figure 4. Two types of parameterization provided by LOTOS-07 code (upper row, nodes; lower row, cells). For both cases, two ori-
entations of grids are shown (0° and 45° in the left-hand and right-hand columns, respectively). Gray points show the paths of P rays in the
depth interval 10–20 km. The grids are used to compute the P model and are presented for a depth of 20 km. The triangles represent seismic
stations.
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vide the answer as to which of them is closer to the reality.
Computing the TOCs for the final iteration is time consuming
and seems, to us, not efficient. These and other arguments
against using TOCs in iterative nonlinear tomographic inver-
sion are discussed in more detail in Appendix B.

In our opinion, the most effective and unbiased way to
evaluate optimal values of free inversion parameters is by
performing synthetic modeling that reproduces the real situa-
tion. This also allows qualitative estimates of amplitudes of
seismic anomalies in the real Earth. This approach is inves-
tigated in detail in Koulakov et al. (2007) and I. Koulakov,
T. Yudistira, et al. (unpublished manuscript, 2008).

Additional Options

The LOTOS-07 algorithm contains a much larger spec-
trum of possibilities than are presented in the online version.
For various reasons, several options are not yet included in
the Web site. The following additional possibilities have
been developed in the framework of the LOTOS-07 code.

Inversion for VP and VP=VS Ratio. The inversion for
the VP and VP=VS ratio can be performed in parallel with
VP and VS inversion. This algorithm is described in Koula-
kov et al. (2007).

Attenuation Tomography. The distribution of attenuation
in the study area is computed based on values of t�. Calcula-
tions are performed within one iteration based on the veloc-
ity model, locations of sources and the ray paths obtained
after iterative inversion for VP, VS, and source parameters.
An older version of the algorithm was used to invert t� data
in Central Chile (Koulakov et al., 2006). The most recent
version of the code was applied to process data in the area
of the Marmara Sea (Bindi et al., unpublished manu-
script, 2008).

Anisotropic Tomography. Based on the general architec-
ture of the LOTOS-07 code, we have developed an algorithm
for performing the anisotropic tomographic inversion. The
inversion provides 3D anisotropic P- and isotropic S-velocity
distributions based on P and S travel times from local seis-
micity. For the P anisotropic model, we determine four pa-
rameters in each parameterization block. These represent an
orthorhombic anisotropy with one predefined direction ori-
ented vertically. Three of the parameters describe slowness
variations along three horizontal orientations with azimuths
of 0°, 60°, and 120°, and one is a perturbation along the ver-
tical axis. This algorithm has been implemented for investi-
gating the crustal and uppermost mantle structure beneath
Central Java (I. Koulakov, A. Jakovlev, et al., unpublished
manuscript, 2008).

Planning of Network Deployments. We have developed a
tool that can be used to plan optimum deployment of seismic
networks. The algorithm produces a realistic distribution of
synthetic events, either on the basis of the worldwide catalog

or manually. Then, several installations of seismic stations
are proposed, and picks are generated based on 3D tracing
in a synthetic model. Comparing the results, one can select
the network that provides the best resolution for the target
objects. This tool has already been used to plan projects
in Chile, Japan, Sumatra, and other areas.

Synthetic Modeling

In this article, we illustrate the working ability of the
LOTOS-07 code with synthetic examples that allow quanti-
tative estimates of the method limitations. The synthetic
models in our works are presented as a superposition of a
1D-velocity model and 3D-velocity anomalies. One of the
configurations of the velocity anomalies, here used as the
main model for testing the code, is presented in Figure 5.
This model is represented by a combination of vertical
prisms of complex shapes that compose the portrait of Simon
Bolivar. In map view, this model does not change with depth.
Amplitudes of anomalies in black and white areas are �7%

and �7%, respectively.
The configuration of source–receiver pairs in this test

corresponds to a real passive seismic experiment performed
in Costa Rica (Dinc et al., 2008). The travel times between
the sources and receivers are computed by tracing through
the synthetic model using the 3D-bending algorithm de-
scribed in the Bending Algorithm for Raytracing in a 3D-
Velocity Model section. The travel times can be perturbed
with noise. Here we consider datasets both with and without
noise to explore the stability of the algorithm toward noise.

Figure 5. Initial model used to create the dataset. Black and
white patterns that compose the portrait of Simon Bolivar are repre-
sented by unlimited vertical prisms with velocity perturbations of
�7% with respect to the reference model (dashed curve in Fig. 2).
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The LOTOS-07 algorithm has several options for adding the
noise. In the considered dataset, noise is produced according
to the remnant residuals after real data inversion for the same
source–receiver pairs. We suppose that the remnant residuals
after performing full tomographic inversion of real data are
partly related to picking errors and partly related to the lim-
ited resolution capacity of the algorithm. In this test, to model
the picking error in the initial data, the noise is defined as
80% of values of real remnant residuals. We believe that this
noise definition is better than the random noise generators
used in most tomographic studies because it takes into ac-
count not only the observation system configuration but also
the different receiving conditions in different stations. In the
considered dataset, the rms of noise for P and S data were
0.113 and 0.132 sec, respectively.

After computing the travel times, we forget everything
about the velocity model and sources and perform full recon-
struction using only two files with the coordinates of stations
and arrival times from unknown sources. This causes the
synthetic inversion to adequately reflect real data processing.
In the synthetic dataset, the initial locations of sources are

presumed to be unknown and are fixed in the central point
of the study area (longitude �84:5°, latitude 9.5°, and depth
of 0). The processing starts from the preliminary source lo-
cation with simultaneous optimization of the 1D-velocity
model. Results of optimization for the 1D model are pre-
sented in Figure 2 and described in the Algorithm for 1D-
Velocity Optimization section. The distribution of events
after preliminary location using tabulated travel times is
shown in Figure 6 in the map and cross section correspond-
ing to iteration 0. In this step, the average error of locations
with respect to the true sources is 4.81 km. Results for the
first iteration correspond to the locations of sources in the
optimized 1D model, the same as in the case for iteration
0, but using the bending tracing algorithm. In this case,
the average error of the source location is 4.68 km. The re-
sults for iterations 3 and 5 correspond to source locations in
the 3D models obtained after two and four iterations of to-
mographic inversion. For these cases, the errors of the source
locations decreased to 3.57 and 3.37 km, respectively.

Figure 7 shows the results of reconstruction of the
Simon Bolivar model after performing iterations 1, 3, and

Figure 6. Events after preliminary location (iteration 0) and one, three, and five iterations presented in map view (left-hand panels) and in
a cross section (right-hand panels). Gray dots are the resulting locations; bars are the mean errors with respect to true locations. Triangles
show the stations in map view and the stations projected to the profile. The location of the profile is indicated in the map corresponding to
iteration 5.
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5 using the node parameterization. Increasing the iteration
number causes the amplitude to increase and instabilities
to appear. The inversion allows reconstruction of even very
fine features, such as lines of the nose and mouth with thick-
nesses less than 10 km.

For inverting the noisy dataset (Fig. 8), the resolution
appears to be lower. When the matrix was inverted, we
had to increase the smoothing coefficient from 0.3 to 0.5
in order to reduce the effect of noise. As a result, the recon-
struction of the model in Figure 8 is not as clear as in Fig-
ure 7. However, features greater than 15 km size are retrieved

stably. The values of residual rms before and after inversion
for both clean and noisy data are presented in Table 1, in
rows 1 and 2. In general, the noisy data represent similar
values of variance reduction as are observed after real data
processing.

As was already mentioned, the LOTOS-07 algorithm
allows inversions to be performed using two different pa-
rameterization methods: with nodes or with cells. Results
of inversions of clean and noisy datasets with the use of cell
parameterization after iterations 1, 3, and 5 are presented in
Figures 9 and 10. It should be noted that the sizes of the cells

Figure 7. Reconstruction of the Bolivar synthetic model using node parameterization. The results after one, three, and five iterations are
presented. P-velocity anomalies with respect to the optimized 1D-velocity model (gray curve in the upper panel of Fig. 2) are presented for a
depth of 20 km.

Figure 8. The same as in Figure 7 but with the noisy dataset.
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were similar to the node spacing in the examples discussed
previously (Figs. 7 and 8). Cell parameterization generally
provides a lower resolution than node parameterization. Ta-
ble 1 shows that the data fit for cell parameterization is
slightly worse than when using nodes. Cell parameterization
provides less stable solutions toward noise than nodes. Fig-
ure 10 shows that the solution after iteration 5 is strongly
perturbed by artifacts. Based on the comparison of these
two parameterization methods, we conclude that node pa-
rameterization appears to be preferable for tomographic in-
version with regard to stability and resolution.

As was mentioned in the Description of the LOTOS-07
Algorithm section, the final solution is obtained by stacking
several models computed in grids with different basic orien-
tations. In Figure 11 we present examples of solutions ob-
tained for grids with 0° and 45° orientations for both node
and cell parameterizations. Here, we present the results of
inversion of the clean dataset after five iterations. For both
parameterization methods, in the central parts of the study
area, the solutions in the different grids are identical. Some
minor differences are observed in the margins, but they dis-
appear after stacking of the results.

We performed several runs of the programs using dif-
ferent starting 1D models. In Figure 12 we present the re-
sults based on the 1D model 2 (Fig. 2). Although this model
seems to be closer to the true 1D distribution, the data fit for
the final result appears worse than for model 1. This paradox
is related to the fact that for model 2, the 1D-distribution op-
timization produces a low-velocity layer that significantly
changes the ray paths with respect to the true model. At
the same time, the results of inversion obtained for starting
model 2 (Fig. 12) seem to be similar to the results based on
model 1, presented in Figure 7. This supports the statement
mentioned in our previous studies that for tomographic
inversion with unknown sources, the reconstruction of rela-
tive-velocity anomalies is much more stable than retrieving
absolute velocities.

In the previous examples, we mostly explored the hor-
izontal resolution. The vertical resolution in the LET schemes
is usually worse. Figure 13 shows the results of reconstruc-
tion of two checkerboard models defined in a vertical sec-
tion. The sizes of the anomalies in Figure 13a,c and 13b,d
were 30 × 30 and 20 × 20 km, respectively. Across the
profile, the anomalies remain unchanged in the band of

Table 1
Values of rms of Residuals Before and After the Inversion for Two Starting Reference Models and Using the Node and Cell Parameterizations

Bolivar Synthetic Model rms (sec) P Residuals, 1 Iteration ms (sec) S Residuals, 1 Iteration rms (sec) P Residuals, 5 Iterations ms (sec) S Residuals, 5 iterations

Reference model 1, nodes, no noise 0.139 0.197 0.058 0.076
Reference model 1, nodes, real noise 0.181 0.248 0.121 0.144
Reference model 2, nodes, no noise 0.150 0.212 0.078 0.109
Reference model 1, cells, no noise 0.139 0.197 0.065 0.088
Reference model 1, cells, real noise 0.181 0.248 0.119 0.144
Reference model 2, cells, no noise 0.150 0.212 0.098 0.140

Figure 9. Reconstruction of the Bolivar synthetic model using cell parameterization. Results after one, three, and five iterations are
presented. P-velocity anomalies with respect to the optimized 1D-velocity model (gray curve in upper panel of Fig. 2) are presented
for a depth of 20 km.
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�90 km. The values of the anomalies in both cases are
�7%. These synthetic tests were performed for the same
source–receiver configuration and in exactly the same way
as in the case of previously described Bolivar tests. The noise
for these synthetic datasets was produced by a generator of
random numbers with the same histogram shape as real re-
siduals. The rms of P and S errors were 0.15 and 0.20 sec,
respectively. In the presented model, we use node parame-
terization. The reconstruction results show that the algorithm
can correctly retrieve the interface of sign change at depths of
25 and 15 km for VER_BRD_1 and VER_BRD_2, respec-
tively. However, the general configuration of the retrieved
anomalies is less clear than for horizontal resolution testing.

Benchmark for Testing the Tomographic Algorithms

The main purpose of any tomographic study is not to
show maps and sections with images of seismic structures
but to convincingly argue that these images represent real
features in the Earth. As a rule, tomographic studies are
supplemented with various tests, and the synthetic recon-
structions usually take a special part. Dataset creation and
reconstructions of synthetic models are usually performed
by the same authors, and tests are often described in passing,
without details. This leaves the reader with no way to deter-
mine whether the test was performed correctly or not.

The basic assumption of synthetic modeling should be
maximum relevancy to real data. In general, we start proces-
sing real data with only two data files: station coordinates
and arrival times of seismic rays. Neither sources nor veloc-
ity model are presumed to be known. Synthetic modeling
should use the same data types and follow the same proce-
dure as in real data processing. Analyzing hundreds of dif-

ferent tomography studies (it makes no sense to refer to all of
them here), we concluded that in some cases the synthetic
modeling does not adequately reflect the processing of real
data. We single out the following major problems:

1. In some algorithms (see, e.g., Chiarabba and Amato,
2003; Husen and Smith, 2004; Dias et al., 2007) the syn-
thetic model is defined in the same cells that are used for
parameterization (e.g., the checkerboard is defined in the
alternating parameterization cells/nodes). In this case the
model is predefined in a most convenient way for the in-
version, and the reconstruction results look much nicer
than the real resolution capacity of the algorithm. For ex-
ample, if a checkerboard with 20 km size patterns is re-
solved with 20 km size cells, it is claimed that 20 km is a
minimal size that can be resolved with this inversion.
However, it is easy to predict, that larger sizes of patterns,
if they are not divisible by 20 km (e.g., 23 km), would
hardly be resolved with the same grid of 20 km spacing.
Similarly, the reconstruction would probably fail if the
parameterization grid is shifted to a half step with respect
to the synthetic patterns. This problem is discussed in
more details in Appendix A.

2. In many studies, real data inversion starts with optimiza-
tion of the 1D model, but for some reason, in synthetic
modeling, this step is forgotten. In most cases, the same
reference model that is used to calculate the synthetic
data is implemented for the synthetic inversion. This is
obviously inadequate for the real situation when the ref-
erence 1D model is unknown. Correct synthetic recon-
struction should start with a different 1D model other than
the true one.

3. In many cases, after computing the synthetic times, the
authors do not forget about the locations and origin times

Figure 10. The same as in Figure 9 but with the noisy dataset.
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of the sources. In these studies, the synthetic reconstruc-
tion starts from the same source parameters as in forward
modeling. Even if the procedure presumes coupled inver-
sion, the source would hardly shift from its true location.
In other words, if we start from true source locations, it
means that half of the job for the synthetic modeling is
done, and the problem becomes much easier than the real
case. Therefore, it is more suitable to start the synthetic
modeling without any information about sources, for ex-
ample, placing them in an arbitrary point of the study area
or using approximate locations in a 1D model.

In addition, two other requirements should be taken into
account:

1. The data should be perturbed with noise with a realistic
statistical distribution and amplitude. The level of noise

must be defined according to the values of remnant resid-
uals after the final iteration of the real data tomographic
inversion. After performing the real and synthetic inver-
sions, the level of remnant residuals should be similar.

2. Inversion parameters (smoothing coefficients, regulari-
zation level, iteration numbers, parameterization, etc.)
should be identical in the real and synthetic cases.

A possibility for external control would be very advan-
tageous. If the synthetic dataset and inversion are produced
and performed by a single author, evaluation of the recon-
struction quality is based on trust in the author that all the
steps were accomplished correctly. In some cases, there is
a strong temptation to make adjustments in order to make
the results more attractive. It is obvious that checking the
working ability of codes would be more unbiased and con-

Figure 11. Reconstruction results for two differently oriented parameterization grids (0° and 45°) for node (upper) and cell (lower) types
of parameterization. P-velocity anomalies after 5 iterations are presented for a depth of 20 km.
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vincing if it were based on external datasets. In other words,
there should be a series of standard tests, benchmarks, cre-
ated by different authors, which can be used to test and com-
pare tomographic codes.

In this study, we present our first contribution to this
benchmark and encourage all authors and users of tomo-
graphic algorithms to take part in its updating. The rules for
creating data should correspond to the requirements listed
previously. First, these datasets should include only the sta-
tion coordinates and arrival times. Any information about
source parameters and velocity model should not be pre-
sented. Ideally, reconstruction of the benchmark should be
performed blindly. The author of the dataset provides the in-
formation about the model and sources only after receiving
the reconstruction results. In this case, comparison of the re-
sults and the model would show the efficiency of the algo-
rithm for performing the real data inversion.

At the same time, we understand that some of the exist-
ing tomographic codes use preliminary catalog locations as
input data. They do not perform absolute location of sources
and optimization of the 1D-velocity model. In order to attract
users of such codes to the benchmark testing, we have cre-
ated several datasets with information about the sources,
which were preliminarily located in the 1D-optimal model.
For these datasets we also provide the 1D models that are
slightly different from the true ones.

In our internet site, see the Data and Resources section,
we provide several datasets that can be used by anyone to test
tomographic codes according to the LET scheme. The data-
sets were produced by 3D raytracing, as described in the
Bending Algorithm for Raytracing in a 3D-Velocity Model
section, through different synthetic models. We present four

datasets for different regions, data amounts, and model com-
plexities: (1) Costa Rica (data with and without noise), (2)
Turkey, (3) Toba (N. Sumatra), and (4) Chile (offshore area
at 21° latitude).

Datasets 1, 2, and 3 correspond to real configurations of
observation systems, while dataset 4 is a synthetic dataset
that was used to plan the deployment of a seismic network.
The dataset for each area contains two files: (1) a file with
station geographic coordinates and (2) a file with initial lo-
cations of sources and travel times. In some of the presented
datasets, coordinates and origin times of sources are not
given. Instead of source coordinates, an arbitrary point (the
center of the study area) is fixed. The uncertainty of the ori-
gin times is modeled by adding a random bias to all travel
times from each source.

The Costa Rica datasets (with and without noise) are
used as examples to illustrate the working ability of the
LOTOS-07 code in this article. The initial models for these
datasets, source distributions, and results are shown in
Figures 5–12. Anyone can easily repeat the calculations
for these datasets using the executable version of the
LOTOS-07 code, which can be found at the Web site listed
in the Data and Resources section. Following rather sim-
ple instructions helps the user execute the entire inversion
procedure based on the same two files of initial informa-
tion. After performing the inversion, the same images for
the Simon Bolivar test as presented in this article will be
obtained. Total execution time for processing this dataset
(more than 1000 events and more than 30,000 picks) using
a regular computer will take 3–5 hr. The same version of
the LOTOS-07 code can be used to invert the other three
datasets.

Figure 12. Reconstruction results with the node and cell parameterizations using another starting reference model (model 2, lower panel
in Fig. 2). P-velocity anomalies after 5 iterations are presented for a depth of 20 km.
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Conclusions

In this article, we present the most recent version of the
LOTOS-07 algorithm, which can be freely downloaded from
our Web site. Using the example datasets provided at the
same Web site, one can easily produce one’s own datasets

according to the proposed format and correctly define the
initial parameters. The calculation can be executed for any
real and/or synthetic dataset. We will continue to work on
developing the code and making it more user-friendly. We
encourage all interested colleagues to regularly follow the
changes on our Web site.

Figure 13. Testing the vertical resolution using the checkerboard model defined in a vertical section. The location of the profile used to
define and visualize the model is shown in the upper maps. Two models with block sizes of 30 × 30 and 20 × 20 are presented. Synthetic
models are shown in map view at 10 km depth (upper row) and in vertical section (middle row). Reconstruction results for these two cases in
the same profile are shown in the lower row. Projections of the events located less than 40 km from the profile are shown with black dots.
Contour lines indicate the levels of �4% and �8%.
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The main features of the LOTOS-07 algorithms with re-
spect to other LET codes are the following:

1. The LOTOS-07 algorithm uses the minimal input infor-
mation (arrival times and coordinates of stations), which
is available just after the phase picking. It performs full
processing starting with 1D model determination and ini-
tial source location and ending with iterative coupled in-
version for 3D velocity and source location. In the case of
using other codes, these steps are usually performed with
different programs.

2. LOTOS-07 contains powerful tools for easily defining
various synthetic models. The synthetic reconstructions
use the same input files (arrival times and station coor-
dinates) and the same program steps as in the case of the
real data processing. This represents a more realistic sit-
uation than in the cases of using the data with known 1D
model and sources, as done in many tomographic studies.

3. Parameterization with dense rotated grids makes the ve-
locity model grid independent. In this sense, the parame-
terization used in LOTOS-07 can be considered as quasi
continuous. The resolution is controlled by damping in
the inversion step, and not by the grid spacing, as done
in some other tomographic algorithms. Furthermore,
LOTOS-07 allows one to choose between two parameter-
ization methods, with grids or cells.

4. The LOTOS-07 code uses the original version of bend-
ing raytracing. An important feature of this algorithm is
that it can use any description of the velocity distribution.
It can be done with nodes, cells, polygons, or analyti-
cal laws. This code is faster than most of the existing
analogs.

5. The LOTOS-07 code has a rather simple file structure and
is easy for practical use.

We are ready to collaborate with all authors and users of
different tomographic codes. In particular, for any configura-
tion of the observation systems, we can produce synthetic
models of any complexity and compute blind datasets using
our algorithms. We can do this work for any colleagues who
are interested in external testing of their algorithms.

We encourage everyone to contribute in producing their
own synthetic datasets according to the rules listed pre-
viously. These datasets will be placed on our Web site and
will be available for any interested party as a part of the
benchmark.

We expect that such collaboration of different specialists
in seismic tomography would be fruitful for improving the
robustness of algorithms and results.

Data and Resources

In the article we present synthetic data based on real con-
figuration of sources and receivers corresponding to a real
experiment in Costa Rica (Dinc et al., 2008).

The LOTOS-07 code, which is presented in this arti-
cle, is freely available online at www.ivan‑art.com/science/

LOTOS_07 (last accessed November 2008). This Internet
site provides detailed description of the code, manuals, list-
ing of all FORTRAN codes, examples of real and synthetic
datasets, and other necessary information. It can be used
both by beginners (running executable files and changing
the files and parameters) and advanced users, who can mod-
ify the source codes. Different options can be offered to any
interested person through personal communication with the
author of this article.

The synthetic datasets for the benchmark presented in
this article are available at www.ivan‑art.com/science/
benchmark (last accessed November 2008). We invite all col-
leagues to make their contribution in creating open testing
datasets. They will be placed on the same Internet site.
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Appendix A

About Defining the Synthetic Model

Synthetic tests must be presented in each tomographic
study in order to show the realistic resolution capacity pro-
vided by the ray coverage and the algorithm. Definition of
the model and the modeling setup should be as adequate for
the real case as possible. In this sense, performing the syn-
thetic modeling in some tomographic studies seems incorrect
to me. One of the key points of synthetic modeling is de-
fining the true model. In many studies, the synthetic model
is defined in the same nodes/cells as used for inversion (e.g.,
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Chiarabba and Amato, 2003; Wang, et al., 2003; Husen and
Smith, 2004; Dias et al., 2007; and many others). We claim
that such a predefinition of the model is the wrong way.
Although in most of cases good reconstruction quality is
demonstrated, these tests do not represent the realistic
resolution.

To ground this statement, we present a series of tests in
Figure A1 created using a simplified 2D tomographic code.
In this code the sources are fixed, the rays are the straight
lines, and the parameterization blocks are the rectangular
cells with constant velocity. Starting velocity is constant. De-
spite these simplifications, this code is very useful to show

Figure A1. A series of tests performed using a simplified tomographic code. The left-hand column represent the true synthetic models.
The middle and right-hand columns are reconstruction results using the cell spacing of 20 and 3 m, respectively.
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some fundamental effects of tomographic inversion. The test
in Figure A1 demonstrates the effect of the synthetic model
predefinition according to the parameterization. In the upper
row, the left-hand plot represents a true synthetic model with
a checkerboard of 20 m spacing. The central plot is the result
of reconstruction with the parameterization cells coinciding
with synthetic patterns. This situation is a simplified repre-
sentation of the modeling concept used in many of the pre-
viously mentioned tomographic studies, when the synthetic
model is defined in the same nodes/cells as used for inver-
sion. The reconstruction in this case is perfect and one could
get the impression that patterns of 20 m size and larger are
reliably resolved in this model. However, this is not true. The
presented situation is not an adequate way for testing, and it
does not represent an experiment for the real Earth where
such predefinition is impossible. It is easy to check that
by using a grid shifted with respect to the synthetic anoma-
lies by a half step (middle row); the inversion fails and we do
not obtain any reasonable result. The same is observed when
the size of the anomalies is not divisible with the grid spacing
(lower row): reconstructing the anomalies that are 23 m in
size using a grid of 20 m, the spacing fails as well.

In LOTOS-07 we propose using a grid with spacing that
is much smaller than the size of the expected anomalies. The
right-hand column of Figure A1 presents the inversion re-
sults for the same synthetic models using the grid spacing
of 3 m. Although in all these cases the synthetic model
and parameterization grids are independent, the inversion
provides reasonable results for all models.

It seems to be a matter of principle that definition of the
synthetic model must be free of any link with the parameter-
ization grid used for inversion. In this sense, the ideal would
be a blind test with an unknown model, which is proposed in
this article.

Appendix B

About Using the Trade-Off Curve for Defining
Damping Parameters

A key problem of any tomographic study is ambiguity of
determination of the damping parameters used for inversion.
To formalize optimal damping searching, Eberhart-Phillips
(1986) has proposed using TOCs, which presents the data
misfit versus amplitude of the resolved model computed
for different damping parameters. It was stated that damping
parameters evaluated using TOCs provide realistic values of
velocity anomalies in the recovered model. Presently TOC
is used as a standard tool in most of tomographic studies.
However, after inspecting dozens of articles and several
Ph.D. theses, we are not convinced that TOC is really useful
for tomographic inversion, at least as it is presented in most
of articles.

Here is a typical description of using TOCs from Wag-
ner et al. (2005): “The other method proposed by Eberhart-
Phillips (1986) involves running the tomography for one

iteration (1_IK) over a range of damping parameters and plot-
ting data variance versus model variance. The ideal damping
value is at the corner of the resulting L curve (2_IK), beyond
which increases in model variance do not produce significant
decreases in data variance, and vice versa. In our case, this
method produces an ideal damping value of 20 for both the P
and S and the P and VP=VS inversions. Changing this damp-
ing value �10 does little to change the basic patterns in the
results, but it does affect the amplitude of the deviations.
These amplitudes are also affected by the number of itera-
tions used. In order to find the optimal number of iterations,
we use our previously determined damping values over 10 it-
erations, and again plot data variance versus model variance,
this time for each iteration. In our case, 2 iterations (3_IK) are
optimal for both the P and S and P and VP=VS inversions.” If
this description is correct, there are, at least, three reasons
why we do not believe in TOCs.

Reason 1

It is indicated that TOC is constructed based on the first
iteration of inversion (1_IK). We have found only two stud-
ies where TOC presents the results after final iteration: a
Ph.D. thesis by Schurr (2001) and our own work (Koulakov
et al., 2007). In other studies TOC is computed after first
iteration, similarly as in the presented description. We claim
that TOC computed in this way is probably not adequate for
evaluation of the optimal damping parameters.

The amplitudes of velocity anomalies in the recovered
model are controlled by, at least, two parameters: damping
and number of iterations. It means that the similar amplitude
of the anomaly can be achieved using weak damping in one
iteration and strong damping in several iterations. In our
strong opinion, using strong damping and many iterations
is more preferable because moving with small steps mini-
mizes the nonlinear effect in each iteration. TOC provides
the estimate for optimal damping in the first iteration. If
we use two, five, or ten iterations, we would obtain different
amplitudes of the solution. Which of them is closer to the
reality? TOCs computed in the first iteration cannot provide
the answer.

As for exploring the curve data variance versus iterations
(3_IK) it does not seem to be an adequate argument. In our
experience, the iterative inversion always provides the largest
changes of the model and data fit after the first iteration (e.g.,
fig. 5a in Koulakov et al., 2007 and Fig. B1c of this study).
Each subsequent iteration provides smaller changes than a
previous one, regardless the value of damping. Thus, the cor-
ner of the L-shaped curve that corresponds to the best num-
ber of iterations will be always in steps 1 or 2.

Reason 2

We do not like the visual analysis of L-shaped curvature
of TOCs (2_IK). For example, looking at the curves presented
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in figure 5c in Koulakov et al. (2007), it is hard to define
which of the values are optimal. For the P model (blue line)
the curve is almost linear, and 1.5, 1, and 0.75 seem to be
equally good. For the S model (red line) the situation is sim-
ilar. It is hard to select the best value between 4, 3, 2, and 1.5.

Reason 3

Even if we found a correct damping, it is not always
helpful in finding the true amplitudes of velocity anomalies
in the entire area. The problem is that the solution amplitude
depends very much on the data coverage. It is especially dra-
matic in regional studies where the ray density varies sig-
nificantly in different parts of the study area. In this case,
one damping parameter can provide over and underdamped
solutions in parts with lower and higher ray coverage, respec-
tively, within one model. As a result, the amplitude of the
velocity anomalies might be lower than the real value in one
part and higher in another part.

Furthermore, in the case of significant noise in the data,
the optimal damping is controlled by the noise level. In this
case, the solution is stable only if damping is sufficiently
strong, and the resulting velocity anomalies can be weaker
in amplitude that the real ones.

To illustrate some of the previous statements about
TOCs, we have performed a synthetic test that is presented
in Figure B2. Some formal parameters for this test are pre-
sented in Figure B1. The dataset for this test was generated
artificially. We consider a seismic network consisting of
50 stations (plot A1) placed in a roughly isometric area of
200 km. 148 events were distributed randomly in the depth
interval of 0–100 km (plot A2). For each event the number of
recorded P picks varied randomly from 25 to 50. The S picks
were generated for 40%–80% of the existing P picks. In total,
8597 pairs of source–receivers have been produced (5525 P

and 3244 S rays). The synthetic model contains two positive
(�8%) and two negative (�8%) anomalies defined inside
ameba shaped polygons (plot A1), which remain unchanged
in all depths. The synthetic travel times were computed using
3D raytracing and were perturbed by random noise of 0.1 and
0.15 sec rms for P and S data, respectively. The reconstruc-
tion has been performed using the LOTOS-07 code in the
way described in the Synthetic Modeling section. Here we
present the results for the P model only; for the S model
the results are similar.

It should be noted that besides the number of iterations
and amplitude damping (AM) in LOTOS_07, we have an-
other parameter, smoothing coefficient (SM), which controls
the properties of the solution. In Figure B1 we present dif-
ferent TOCs with fixed AM or SM corresponding to the first
iteration just after inversion (without performing raytracing).
This is a way for presenting TOCs, which is used in most of
tomographic studies. It can be seen, that if we fix SM and
consider different values of AM, the TOCs for SM � 0 (solid
curve) andSM � 0:5 (dashed curve) have similar hyperbola-
like shapes. If we use a criterion of finding a corner of an
L-shaped curve, the best damping value would correspond to
AM � 1:5 for both values of smoothing. In Figure B2 in
plots C1–C3 and D1–D3, we present the inversion results
corresponding to this value and SM � 0:5 and SM � 0,
respectively. In both cases the amplitude of the solution is
much lower that the true values, that means that AM �
1:5 provides overdamped solutions.

In Figure B1b we present the TOCs corresponding to
fifth iteration and fixed smoothing, SM � 0:5. It can be seen
that in this curve the corner point corresponds to the value of
AM � 3. It is clear that if the value of AM � 1:5 provides the
overdamped solution, the value of AM � 3 would result in a
worse model with lower amplitudes of anomalies.

Figure B1. Different formal parameters corresponding to the synthetic model presented in Figure B2. (a) The TOC just after inversion in
first iteration (without raytracing). Solid and dashed curves represent the TOC corresponding to fixed values of smoothing: SM � 0 and
SM � 0:5, respectively. Numbers indicate values of AM. The gray curve shows the TOC for variable smoothing (SM, indicated with numbers)
and fixed AM � 0:6. (b) The TOC computed for the fifth iteration using a fixed value of smoothing, SM � 0:5. (c) Values of variance
reduction after raytracing in four iterations for different values of AM (indicated with numbers) and fixed smoothing, SM � 0:5.
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According to our estimations, the best solution that
shows the most realistic amplitudes of anomalies (plots
B1–B3 in Fig. B2) is achieved with AM � 0 and SM �
0:5. It means that for this case, the most realistic solution
is obtained without AM, only using smoothing damping.

This test demonstrates that the method of finding the op-
timal damping using TOCs proposed by Eberhart-Phillips
(1986) fails, at least for this test. First of all, the damping
values corresponding to corner points of TOCs in the first
and final iterations are not the same. If we use five iterations,
it is more logical to use the value corresponding to the final
iteration. Thus, the suggestion of Eberhart-Phillips (1986) of
using damping found in the first iteration for the entire itera-
tive procedure seems to be incorrect. Second, both corner
points for first and fifth iterations do not provide the optimal
damping values.

In LOTOS-07 we search for optimal values for smooth-
ing and amplitude damping based on synthetic modeling. To
do it correctly, we perform the synthetic modeling in the way
that is described in the Synthetic Modeling section and
shown in Figure B2. It should be noted, that we prefer play-
ing more with SM than with AM. However, this is not a strict
requirement and is just a matter of taste and case.
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Figure B2. Synthetic model for testing the efficiency of using the TOCs. A1 is a distribution of true synthetic anomalies, which remain
unchanged in all depths. The triangles depict the stations. A2 is a distribution of events. Different symbols indicate the depths of th eevents.
B1–B3 are the reconstruction results in one, three, and five iterations, respectively, using smoothing SM � 0:5 and AM � 0. C1–C3 represent
the results with AM � 1:5 and SM � 0:5. D1–D3 represent the results with SM � 0 and AM � 1:5. Contour lines indicate the levels of�4%
and �8%.
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